Algorithms for Two-dimensional XRD Data Evaluation
نویسندگان
چکیده
منابع مشابه
Evaluation of Data Mining Algorithms for Detection of Liver Disease
Background and Aim: The liver, as one of the largest internal organs in the body, is responsible for many vital functions including purifying and purifying blood, regulating the body's hormones, preserving glucose, and the body. Therefore, disruptions in the functioning of these problems will sometimes be irreparable. Early prediction of these diseases will help their early and effective treatm...
متن کاملImage Restoration with Two-Dimensional Adaptive Filter Algorithms
Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...
متن کاملComparison Of Modern Clustering Algorithms For Two-Dimensional Data
Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main task of exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recogn...
متن کاملA Comparative Study of Exact Algorithms for the Two Dimensional Strip Packing Problem
In this paper we consider a two dimensional strip packing problem. The problem consists of packing a set of rectangular items in one strip of width W and infinite height. They must be packed without overlapping, parallel to the edge of the strip and we assume that the items are oriented, i.e. they cannot be rotated. To solve this problem, we use three exact methods: a branch and bound method, a...
متن کاملTwo-Dimensional Clustering Algorithms for Image Segmentation
This paper introduces modified versions of the K-Means (KM) and Moving K-Means (MKM) clustering algorithms, called the Two-Dimensional K-Means (2D-KM) and Two-Dimensional Moving KMeans (2D-MKM) algorithms respectively. The performances of these two proposed algorithms are compared with three of the commonly used conventional clustering algorithms, namely K-Means (KM), Fuzzy C-Means (FCM), and M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Crystallographica Section A Foundations and Advances
سال: 2014
ISSN: 2053-2733
DOI: 10.1107/s205327331408869x